A new polymorphism in the type II deiodinase gene is associated with circulating thyroid hormone parameters.
نویسندگان
چکیده
Type II deiodinase (D2) is important in the regulation of local thyroid hormone bioactivity in certain tissues. D2 in skeletal muscle may also play a role in serum triiodothyronine (T(3)) production. In this study, we identified a polymorphism in the 5'-UTR of the D2 gene (D2-ORFa-Gly3Asp). We investigated the association of D2-ORFa-Gly3Asp, and of the previously identified D2-Thr92Ala polymorphism, with serum iodothyronine levels. D2-ORFa-Gly3Asp was identified by sequencing the 5'-UTR of 15 randomly selected individuals. Genotypes for D2-ORFa-Gly3Asp were determined in 156 healthy blood donors (age 46.3 +/- 12.2 yr) and 349 ambulant elderly men (age 77.7 +/- 3.5 yr) and related to serum iodothyronine and TSH levels. D2-ORFa-Asp(3) had an allele frequency of 33.9% in blood bank donors and was associated with serum thyroxine (T(4); Gly/Gly vs. Gly/Asp vs. Asp/Asp = 7.06 +/- 0.14 vs. 6.74 +/- 0.15 vs. 6.29 +/- 0.27 microg/dl, P = 0.01), free T(4) (1.22 +/- 0.02 vs. 1.16 +/- 0.02 vs. 1.06 +/- 0.04 ng/dl, P = 0.001), reverse T(3) (P = 0.01), and T(3)/T(4) ratio (P = 0.002) in a dose-dependent manner, but not with serum T(3) (P = 0.59). In elderly men, D2-ORFa-Asp(3) had a similar frequency but was not associated with serum iodothyronine levels. This new polymorphism in the 5'-UTR of D2 is associated with iodothyronine levels in blood donors but not in elderly men. We hypothesize that this might be explained by the decline in skeletal muscle size during aging, resulting in a relative decrease in the contribution of D2 to serum T(3) production.
منابع مشابه
Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients.
INTRODUCTION Animal studies suggest that up to 80% of intracellular T(3) in the brain is derived from circulating T(4) by local deiodination. We hypothesized that in patients on T(4) common variants in the deiodinase genes might influence baseline psychological well-being and any improvement on combined T(4)/T(3) without necessarily affecting serum thyroid hormone levels. METHODS We analyzed ...
متن کاملGenetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.
Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly incre...
متن کاملNew Insights toward the Acute Non-Thyroidal Illness Syndrome
The non-thyroidal illness syndrome (NTIS) refers to changes in serum thyroid hormone levels observed in critically ill patients in the absence of hypothalamic-pituitary-thyroid primary dysfunction. Affected individuals have low T3, elevated rT3, and inappropriately normal TSH levels. The pathophysiological mechanisms are poorly understood but the acute and chronic changes in pituitary-thyroid f...
متن کاملNew insights into thyroid hormone replacement therapy
It is widely accepted that thyroid hormone replacement for patients with hypothyroidism can be fully accomplished with levothyroxine monotherapy, as assessed by serum thyroid function tests. However, approximately 10% of hypothyroid patients are dissatisfied with the outcome of levothyroxine monotherapy, and physicians continue to report benefits from combined levothyroxine-triidothyronine ther...
متن کاملThe FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration.
The active thyroid hormone 3,5,3' triiodothyronine (T3) is a major regulator of skeletal muscle function. The deiodinase family of enzymes controls the tissue-specific activation and inactivation of the prohormone thyroxine (T4). Here we show that type 2 deiodinase (D2) is essential for normal mouse myogenesis and muscle regeneration. Indeed, D2-mediated increases in T3 were essential for the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 289 1 شماره
صفحات -
تاریخ انتشار 2005